Corticotropin-releasing factor receptor 1 and central heart rate regulation in mice during expression of conditioned fear.
نویسندگان
چکیده
The present study was performed to 1) determine heart rate (HR) effects mediated through central corticotropin-releasing factor receptor subtypes 1 (CRF(1)) investigate and 2 (CRF(2)) and 2) to the contribution of endogenous CRF to baseline HR and its fear-induced adjustment in freely moving mice. CRF ligands were injected into both lateral ventricles (i.c.v.) 15 min before the presentation of a conditioned auditory fear stimulus (CS). Initial behavioral results suggest an ovine CRF (oCRF)-mediated enhanced baseline fear and mildly enhanced conditioned auditory fear. In contrast, i.c.v. injection of oCRF (35-210 ng/mouse) dose-dependently decreased baseline HR, increased HR variability, and attenuated the CS-induced tachycardia. This effect is suggested to depend on a combined activation of sympathetic and parasympathetic activity referred to as enhanced sympathovagal antagonism. An extreme bradycardia was elicited by oCRF injection into the lower brainstem. All HR effects were probably mediated by CRF(1) because injection of the CRF(2)-selective agonist mouse urocortin II was ineffective, and the baseline bradycardia by i.c.v. CRF was preserved in CRF(2)-deficient mice. Injection of various CRF receptor antagonists including the CRF(2)-selective antisauvagine-30 did not affect the conditioned HR response. This finding suggests that endogenous CRF does not contribute to the fear-mediated tachycardia. Thus, the hypothesis of an involvement of CRF in HR responses of mice to acute aversive stimulation is rejected. Pharmacological evidence points at the involvement of CRF(1) in enhanced sympathovagal antagonism, a pathological state contributing to elevated cardiac risk, whereas the physiological role of the brain CRF system in cardiovascular regulation remains to be determined.
منابع مشابه
Angiotensin type 1a receptors on corticotropin-releasing factor neurons contribute to the expression of conditioned fear.
Although generally associated with cardiovascular regulation, angiotensin II receptor type 1a (AT1a R) blockade in mouse models and humans has also been associated with enhanced fear extinction and decreased post-traumatic stress disorder (PTSD) symptom severity, respectively. The mechanisms mediating these effects remain unknown, but may involve alterations in the activities of corticotropin-r...
متن کاملCentral amygdala glucocorticoid receptor action promotes fear-associated CRH activation and conditioning.
The amygdala is a key limbic area involved in fear responses and pavlovian conditioning with the potential to directly respond to endocrine signals associated with fear or stress. To gain insights into the molecular mechanisms and subregional specificity of fear conditioning, we disrupted type II glucocorticoid receptors (GRs) in the central nucleus of the amygdala (CeA) by delivering lentivira...
متن کاملConditioned fear is modulated by CRF mechanisms in the periaqueductal gray columns
The periaqueductal gray (PAG) columns have been implicated in controlling stress responses through corticotropin-releasing factor (CRF), which is a neuropeptide with a prominent role in the etiology of fear- and anxiety-related psychopathologies. Several studies have investigated the involvement of dorsal PAG (dPAG) CRF mechanisms in models of unconditioned fear. However, less is known about th...
متن کاملCorticotropin releasing factor type-1 receptor antagonism in the dorsolateral bed nucleus of the stria terminalis disrupts contextually conditioned fear, but not unconditioned fear to a predator odor.
The bed nucleus of the stria terminalis (BNST) plays a critical role in fear and anxiety. The BNST is important for contextual fear learning, but the mechanisms regulating this function remain unclear. One candidate mechanism is corticotropin-releasing-factor (CRF) acting at CRF type 1 receptors (CRFr1s). Yet, there has been little progress in elucidating if CRFr1s in the BNST are involved in d...
متن کاملMitogen-activated protein kinase signaling in the hippocampus and its modulation by corticotropin-releasing factor receptor 2: a possible link between stress and fear memory.
A coordinated activation of multiple interlinked signaling pathways involving cAMP-dependent protein kinase (PKA) and mitogen-activated extracellular signal-regulated kinases (Mek-1/2) regulates gene expression and neuronal changes underlying memory consolidation. In the present study we investigated whether these molecular cascades might mediate the effects of stress on memory formation. We al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 312 3 شماره
صفحات -
تاریخ انتشار 2005